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PREFACE

This is the first part of a two-part report that describes research
initiated at Rand in mid-1975 under the Project RAND research project
"Target Acquisition." The subject is "map matching” or image corre-
lation to achieve autonomous target acquisition and terminal guidance
for missiles (both strategic and tactical), with particular emphasis
on the acquisition phase.

Part I presents an analysis of the probabilities of correct and
false acquisitions, extends it to include the effects of a number of
common error sources, and describes computer simulations based on data
samples from real scenes. Part II* provides a more general and more
rigorous analytical approach. Some of the conclusions derive jointly
from both phases of the study, but Part II is published separately
because it is addressed to readers with a theoretical and mathematical
interest in the subject.

Both reports should be of interest to defense and industrial proj-
aect managers and engineers involved in the development of missile guid~
ance, particularly those concerned with current or future correlator
programs., '

1. W Wessely, Image (erpclation, Pavt [I: Uheorctical Basis,
* The Rand Corporation, R-2057/2-PK, November 1976.
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SUMMARY

Image correlation or "map matching" makes possible a type of weapon
guidance that provides autonomous target acquisition and tracking. This
study analyzes the image correlation process, both theoretically and by
using computerized simulations; primary emphasis is on the often ne-
glected but crucial acquisition phase. (The requirement for achieving
adequate terminal tracking accuracy in weapon delivery has been and is
being studied extensively elsewhere and, for this report, 1is considered
to be of secondary importance; it is simply assumed that, if necessary,
operational systems could accommodate a software change to maximize
tracking accuracy after the initial acquisition has been accomplished.)

The essential step in image correlation guidance is to find the
position of “best fit" between two similar but nonidentical images or
"maps": a sensor image of the terrain surrounding a desired target,
obtained in real time as the weapon approaches, and a previously pre-
pared peference image of roughly the same area. The match point 1is
found by systematically displacing one map relative to the other and
computing, for each of the many possible displacements, the value of a
comparison function or "metric" that, ideally, has an extremum (max or
win) value at the match point. The particular displacement, suitably
scaled, that preduccs the estremum becomes the correctio_n signal for
" the guidance system. -

- Unfortunately, precisely because the two maps arve not identicale-
owing to detector noige, veal changes in the scene, geowetrical dis-
tortions, and several other causes that are discussed in this report-—-
the displaccment'chat produces the extremum does wot always correspond
to the correct match point. It only does so on the avoraye. Accord-
. ingly, this analysis focuses 6n two topics of principal concern:
(a) the probability of achieving a correct match (conversely, the prob-
'qbiucy. of a "false lock" or, 1a military terms, a gross error) and
(b) the selection of an appropriate comparigon wetric to maximize (a).
" The probability of achieving a correct patch,'Pc. can be analyzed
~ in a straightforward uaqqe:.ifiona is wil;ing to mgke several simplifying
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but unrealistic assumptions, The unrealism comes in attempting to
describe terrain--particularly terrain that has been modified by man--
using only Gaussian statistics. The results of such an analysis are
qualitatively correct, but quantitatively they tend to be pessimistic
(as our analysis shows). Nevertheless, we use this approach in the
first por;ion of this report, followed by a description of some simu-
lations using real scene data. In Part II,* a broader perspective on
the map-matching problem is undertaken and some important insights are
derived.

In the simple Gaussian approach developed in Section II, two com-
mouly used comparison metrics are calculated by using the so-called
Product (a sum of products that is related to classical correlation)
and MAD (mean absclute difference) algorithms, respectively. It is
shown that in all cases Pc increases with the size of the data sample
and with the elemental signal-to-noise ratio (S/N), and decreases
(slowly) with increasing search area. It is also shown that at low
S/N, the Product algorithm is the preferred one (i.e., it leads to
higher probabilities of correct lock), but at high S/N the MAD algo-
rithm is preferred.

In Section IIl, the same methods are extended to include the effects
of a number of commonly encountered systematic error sources, Geomet-
rical errors include synchronization (an effect peculiar to digital
systems in which the picture elements of the two maps are staggered by
some unknown fraction of a picture element), rotation, and scale factor
(mngnificatiun), These all have the effect of reducing the peak value
of Pc and increasing the width of that function; i.e., they both increase
the chances of a false lock and decrease the tracking accuracy, 1f vo-
tation and scale are controlled, as they usually caa be in practice, such
that n0 £ 1 and n(p - 1) < 1, then performance is not seriously degraded.

Here n is the number of independent samples across the (smaller) sensor
~ map, 0 is the rotation in radians, and p is the magnification. The

syuchronization error, however, is inherently uncontrollable aund, in the

“R-2057/2-PR, Inage Corvelation, bavt Il: Theovetioal Busiu (see

‘Ref. 1), - -
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case of uncorrelated data, can have roughly the same effect as reduc-
ing any S/N to less than unity. Several kinds of systematic intensity
errors can also occur in practice. Generally these primarily affect
the peak value of PC. A simple uniform reduction in signal level (due
to an errorneous gain setting, for example) is shown to be quite serious
for the MAD algorithm, but the Product algorithm is unaffected. Other
and more complex intensity errors are treated in Section IV, The
principal conclusion is that real systems suffer from a number of errors
that, loosely speaking, lower the effective value of S/N, so that the
higher values which, according to Section 11, would render the MAD or
similar algorithms attractive are seldom realized in practice.

Some tests of the foregoing theory are described in Sectiom IV,
These tests were carried out by means of computer simulations of the
map-matching process using some digitized samples of data taken from
real scenes. Four scenes, differing in both visual "texture" and auto-
correlation length, were selected out of a large available data base to
represent differant types of terrain., They are crudely categorized as
agricultural, mountain, desert, and suburban. The most extensive simu-
lations involved adding Gaussian noise to patches lifted out of each
scene, and then comparing the so-modified "sensor" map with the original
or "reference” map, using both the Product and the MAD metrics., Both
algorithms consistently performed significantly better (i.e., had higher
Pc) when operating on these real data than was predicted by the theory
developed in Section 1I. This phenomenon is probably due to the fact
that (a) the scenes are non-Gaussian, whereas the theory gpecifically
postulated Gaussian statisties, and (b) the very features and structure
that modify the statistics render the scenes "more unique," with proper-
ties that the comparison metrics are able to exploit.

- Simulations were also carried out with synchronization, scale fac-

tor, rotation, and "guin" errors introduced on the same samples of real

scene data; these results were consistent with the theory. In addition,
a few>experiments were conducted in which substantial blocks of the

- sensor scene were altered drastically to simulate the effects of shadows
and jameing. ‘the Product algorithm is wore resistant to "shadows" th;n

~the MAD algorithm, as-expected; but both are seriously degraded by large
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amounts of high~intensity "jamming."

Finally, a small number of gray-
level quantization codes were tried. In these tests, PC increased
monotonically with the number of levels used, but 8-level (3-bit) codes
were about 90 percent as good as 'continuous" (e.g., 64~level) codes
and so should suffice for many applications.

The fundamental nature of the map-matching problem is reexamined
in Part II of this study, where the degree of theoretical justification )
for the use of the various comparison metrics 1s also investigated.
Since the problem is basically one in statistical decision theory, the
analysis of Part II shows that the optimum solution is achieved by com-
puting the likelihood ratio for each comparison and then choosing the
match point at the place where the likelihood ratio is maximum., Un-
fortunately, that computation requires a knowledge of the N-dimensional
joint probability distributions--functions that are unknown and, in a
practical sense, unmeasurable. Hence, one must resort to approximations.
These usually take the form of maximizing or minimizing one of several
functions, herein called "metrics." In much current work, these are
chosen almost arbitrarily and therefore must be subjected to essentially
experimental validation. By considering two-picture-element scenes,
such that the likelihood ratio and several of the commonly used metrics
can be expressed in simple algebraic form and discussed in geometrical
terms, the essential features of the various metrics are explained and
compared with the likelihcvod ratio. In this way heuristic arguments
are developed that support the use of the Product algorithm when S/N
is low and the MAD algorithm when S$/N is high,

Two major conclusions were derived from this study and are pre-
‘sented in Section V. The principal conclusion is that by using the
methods illustrated in this report, an approximate lower bound on the
value of Pc can be calculoated, so that one can, at least in principle,

i . design systems vo an acquisition specification, Several quantitative
§ relationships between Pc and various system parameters have been dririved

i , and largely confirmed by simulation testing. These can be used to carvy
; ‘ out a number of design tradeoffs, including a balunciug of the costs

o ~ of a tighter overall Pc requivenent with the loss of those weapons that

i _ "~ fail to acquive. The theoretical wodel of the random Gaussian scene
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is known to be not completely realistic, but it appears to err on the
counservative side. Thus a "floor" for PC can be established, which
should permit the flight test performance of future properly designed
systems to be somewhat better (i.e., to exhibit fewer gross errors)
than is predicted by this theory.

The second conclusion is that there ought to be better algorithms
than those that have usually been used in the past. Since (a) there
is at present little theoretical basis for the commonly used comparison
metrics, and (b) most real terrain contains features beyond those de-~
scribable by simple Gaussian statistics, it seems both reasonable and
not inconsistent with theory to search for more efficient ways to carry
out the initial map-matching or target-acquisition function. In par-
ticular, drastic preprocessing to extract special features of a given
scene, using techniques currently being developed and exploited in the
field of pattern recognition, appears promising for the generation of
more efficient algorithms. Steps that can be taken in this direction

are briefly outlined,




-%i-

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance given by their
colleagues, H, W. Wessely and W, Sollfrey. Wessely provided valuable
consultation throughout the study and assisted materially in the prepar-
ation of the report. Sollfrey made a number of specific calculations

and gave the report a careful and insightful technical review,

PR A A i LI _\
RN xww*"?‘“‘




L oo kit

4
S
A

PRE
—xiii- gﬁ CEDING PAGES BLANIC.NOT Frrigp

AT

CONTENTS

FAC iii
PREI' E C B I B I I A I B I B B IR B IR B N IR B R R R B R AR S R NN R SR AT Y S R R AR B R N 4 1

.
SUWARY LR IR K Y IR A BB I B IR AT A I A 2K B AR B B R BN R AR BB K B AR K BN K N 2L BN K B B B N AR BN 2 v

ACKNOWLEDGMENTS 4 5 5 200 LS PPN E L IECEETEEILETIEBIIEIIGIICEOTEIOTES Xi

FIGURES B 6 S S0 POV E LTRSS SN TGS D PP IT A INe xv
'I‘ABLES LI B S I IR B IR N IR R N R W N O R N I R R I R I R N Y BN R I B TR N N RN R K BN xvii
Section

I' INTRODUCTION S48 0 5 0 5 8 89N EEEN BN EIR IO IOES 1

I1. A PRELIMINARY ANALYTICAL APPROACH ..¢vienevernesncane 4
Statement of the Problem (eevesvesonserarecassessas 4
“Metrics" and Formulas for Fo vovvvvvoninnaveninnes 7
Numerical ReSultsS ceieveeesrseonnissnenscasessancons 11
CONCLUSLIONS svrvvvoseenecasnanssscssnssoasassssnsvs 11

111, TREATMENT OF VARTOUS SYSTEMATIC ERRORS (...civeevaens 15

Qualitative Discussion of Error Sources .eeseeesees 15
Analysis of Geometric Errors suvverssessecsvsassses 19
SYnchronization tevevssssenrasscesssnesarssasorsnnos 19
Magnifleatdon ,oeeesseersnunsvsssnnsssvsvescsnannsns 22
ROCALION svnvvennnrsesnasoannrocnsssasnsossasrsnnnns 28
Analysis of Uniform Amplitude Errors «ocvseensscans 32
CQ“Cluﬂions S SO P P I P IV EIIPIEE RIS VIEELEBREOEIBEORIAIDES 33

IV. SIMULATIONS USING REAL DATA ccuvvcvsiennvnnsnsnennons 34

The Data BAaSO vevscvessnssrasssonsssroassossrssosse 34
Simulations with Noise Added oo vvviernnsonsvaneses 36
Simulation of Geomecerie Distortions ivsiversvessss 39
Simulacion of Inte“ﬁity Cha“gﬁs Corevevs el IR RY 61
U“ifotm Gain Chﬂngﬁs BeevesssREsEIRBIINIEROIINIOISIEE 4)
Block SubStitutions sesvesvrvesssssessnsssatcnanans 42
Gray“Level Qua“tizutiu“ VER eI PV E eI IEN PRGN VPRENIDY &3
Locﬂl Oper“tors [ BEEFEREENE NN NI I A A N A B SN B R 3 BRI A B &6
CONCIUSLONS suiiirseisasartsrnassiareraatruriasnana . 48

© V. MAJUR CONCLUSIONG AND FUTURE PLANS .vvveverernvnnen 49
mgmcss ."f’.ﬂ‘.’.,.".'l‘»‘..."....‘.'..Il.i..‘l.'.....‘l‘ 53




AL L T e

¢ PRECEDING: |
xv- Ej PAGES BLANK.NOT prpgep |

T A R A gt

1. Map Definitions ...iviieeiriinnsieniicsconsossnsssonnans 5
2. Definition of Map Dirsplacement .......ceeoconsvoaronsces 6
3. Pc Versus S/N for Additive Noise Only ....ievvvvevedons 12
4. Probability Contours for S/N = 0.1 (vevivveacrnosannnns 12
5. Probability Contours for S/M = 1.0 (...iiiieviearrcnnns 13
6. Probability Contours for S/N = 30 ..veeeesrreircrsnsses 13
7. Geometrical Distortion Errors .iveeeesseeessesssececsns 16

8. Cell Construction for Analysis of
Synchronization Errors ...cicevesnsesressorrsvasssesas 20

9. Probability Contours for $/N = 0.1 + Maximum
Synchronization Error (iviiieiiienieiietiinsnssinnees 21

10. Probability Contours for $/N = 1.0 + Maximum

Synchronization Brror .ioiiieiernineneennscnncrcnrennas 21
. 11, Probability Contours for $/N = 30 + Maximum
i Synchronization Error sveevcesiessnsessossarnsseasras 22

E; 12, UEffective Reduction in S/N Ratio Due to Synchroniza-

tion Error Using MAD Algorithm .. .cvcivievinnrcasnsnnes 23

%’ 13.  Relative Degradation in P, Versus Magnitude of
i Synchronization Error ..v.ivevivnesinrsstssnrasesnses 23
X 14 P as a Function of Magniffcation P ..eeiieiiiiiiiaiias 28
i; 15, Comparison of the Relative Magaitude of the Correla-

R : © tion Peak for Scale Factor and Rotation Errors ...... 30
| A :
:‘g'(-

16, Effect of Signal Level Loss on Poweiviiaiivinaiianinn, 32

17.  Autocorrelatlen Puncefon for Four Sclaocted Scenesy
Bach Scene Is 100 % 100 Pixels (about 5 mi s8q) ...... 35

L BT R ek e O VAT SRR T T e e




PR

85 BLANK.NOT FIIMED

AT,
(':,,_,;,r ?f‘-’;!».’\éf#w
H

~xvii~-

TABLES

1. Relative Magnitude of Overlap Area with Magnification
Errors LR R 2R BN B N 4 LR 20 K B R B B I BRI Y R I BRI Y B BN BN R B BN KRR BN B B R B BRI B AN 3 25

2. Number of Overlapping Positions as a Function of
Scale Factor and Map Size .iivesiersvaccocsonorensnns 26

3. Relative Magnitude of the Correlation Function Peak
as a Function of Scale Factor Error and Map Size .... 27

4, Approximate Relationships for Allowable Scale
Factor Error as a Function of Map Size ..cevevecncens 27

Relative Magnitude of Overlap Area with Rotation

Errors €9 4 48 350200 LI PIEILLEPINLEIEIIBITOEIEOELIELIIOIOLIETLELIEOTDY 29

6. Comparison of Overlap Areas for Scale Factor and
Rotacion Errors TS0 000 00250 040500080 0PN SIS TENETYINSYS 31

7. Comparison of Theory with Experiment .iiseeesucnsnsvsns 38

3. Effect of Uniform Relative Amplitude Errors on the

Probability of Correlation suievevssesessssccosencssns 42
9, Effect of Certain Block Substitution Errors on the

probability of Correlation AN EEE NN I I N I A A I N B N B N NI WY N ) 63
10. Quantizatio“co‘lea S EPE BSOSO E PO EREEO BRI AR RSN 4“

11, Experimental Verification of Effect of Quantization
on the Probability of Correlation ...cievsescsvssasae 45

e



s '~.. r_\:_‘-\_,. R \‘.-. o

-1-

1. INTRODUCTION

The military problem that initiated this study, and to which the
results are relevant, 1s one of achieving autonomous target acquisi-
tion and tracking for indirectly fired weapons. Such weapons will be
required in the future when manned aircraft are unable to penetrate to
within visual line-of-sight to intended targets without suffering in-
tolerable losses. The acquisition function is the more difficult of
the two, so muck ~o that to date only in exceptional instances is human
intervention not required at some stage of that process, whereas auto-
matic tracking following acquisition or "lock-on" is commonplace. Both
requirements--that for target acquisition afier weapon launch from
staudoff and that for accurate terminal guidance--dictate (with few
exceptions) the presence of some kind of two-dimensional imaging sen-
sor on board the weapon.

The most common approach to in-flight acquisition is to acquire
the target in "real time" with direct human assistance, using radio
links between the weapon and its launch aircraft (or via relays to some
other control point). Radio links enable a human observer to find,
identify, and "acquire" the target, and incidentally also to wonitor
the subsequent tracking operation and vefine it as needed, This ap-
proach has its obvious costs and vulnerabilities. Alternatively, if
prior rcoconnaissance'imagery of the target area is available, an ob-
server can study it, find the target, and mark it, 1f this marked
imagery (in some appropriate form) is then placed on board the weapon,
together with the sensor for obtaining "live" imagery, all that is
required in real time is to briag thedge two images into coincidence,
This process can be mechanized on the weapen. At that point, the
weapon will “know" where it is with respect to the target and will be
able to steor itself to impact. This approach, too, has its costs
and vulunerabilities--both quite different from the data-link approach.

~ This type of sutonomous acquisition and tracking system is the subject
of the present study. ‘ '

St S O b g e T
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The technical problem that needs to be examined reduces to omne of
comparing two pleces of terrain imagery that are similar, but certainly
not identical, and that are presumably at least partially overlapping.
The acquisition functlon reduces to answering, with some preassigned
level of confidence, the question "Do the two images in fact overlap,
so that they can be brought into registry?'" The tracking function
corresponds to measuring, as accurately as possible, the displacement
between the centers of the two images after registration has been
achieved, and repeating this measurement with updated sensor images
obtained as the weapon approaches the target. These displacements are
then supplied to the guildance system to effect terminal guidance and
"homing" onto the target. The image registration process is colloquially

referred to as "map matching,"

or sometimes as image correlation--al-
though correlation in the strict mathematical definition of that word
may or may not be required.

The idea of using map-matching techniques for missile guidance has
been around for a long time, and indeed the Air Force has actively
sponsored hardware development programs in this field for at least 20
years, The lwplementations in early systems were all analog--either
optomechanical or electro-optical in nature; today, in keeping with
curreat integrated circuit technology, most of the work is digital.
However, the principles, and the fundamental strengths and weaknesses,
are still the same. The major weakness of these systems, and the reason
for more failures than successes in the past, is that they are in-
herently susceptible to false matches, which, of course, leads to gross
crrors and wasted (or worse) weapons. In fact, past systems that have
had the greatest, though still marginal, level of success were those
that minimized the acquisition requirement--either by more or less
continuously tracking a succession of planned checkpoiut aveas all the
~ way from launch or, in the case of manned bombers, by using a crew
mewber to wonitor the acquisition phase and relying on the correlator
only for sceurate tracking. Past analyses [2) of correlation guidance
systems have also concentrated on the achievable tracking accuracy and,
with one uotable exception [3), have almost iguored the “false-lock" or
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gross-error problem. Because of this unfortunate history in an other-
wise promising and needed area of development, the principal effort
in the current study has been directed to more fully understanding the

acquisition aspects of image correlationm.

i e b a2 e " .
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II. A PRELIMINARY ANALYTICAL APPROACH

STATEMENT OF THE PROBLEM

The mathematical formulation of the correlation problem can be
introduced as follows. Although images have an inherently two-
dimensional* format, initially it will suffice (and it will simplify
the exposition) to use but a single index to designate the picture
elements in a map or scene. The implied extension to a full two-
dimensional notation is straightforward and should cause no confusinn
or loss of generality, at least in concept.

The operational situation to be modeled is the following: An
airborne or satellite-borne sensor images a scene on the ground con-
taining a target. This image is broken down into an array of M (square)
picture elements (sometimes called pixels), and a value XI, represent-
ing a certain level of a gray scale, is assigned to each element., These
data are stored in a computer memory and are henceforth referred to as
the "reference map." This reference map, shown schematically in Fig, 1,
contzins the target located at the center. At some time later, another
sensor on board an aircraft or a weapon images a smaller portion of this
same scene containing N elements, YI’ which are similarly digitized to
form a "sensor map." (In Fig, 1, both maps are assumed to be square,
purely for convenience of notation; thus, m = W and n = A represent
the number of picture elements in one row of the reference and sensor
maps, respectively.) The center of the sensor wmap, which is related
to the boresight of the weapon, will generally be displaced from the
center of the reference miap by some unknown amount that depends on mid-
course navigaticn and pointing errors, and the sensor map may or may
not actually contain the varget. The first problem, then, is to find
- (1f it exists) the portion of the reference map that matches the sensor
map. Once this is accomplished, the displacement or offset between the
centers of the two maps (shown with two components (K,L] in Fig. 1)
~ sarves as the correction signal to the gu;dance/control subsysatem,

o ,
Three-dimersional images and 3-D terrvain/structure modeling ave,
. of course, possible, but these are iguored for the present.
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Fig. 1 =Map definitions

To simplify the exposition, it has been explicitly assumed above
that the sensor map is smaller than the reference map. In principle,
it could be the other way around: a small reference map could be
-~ watched againet a large sensor map, and any analysis of one case would
bé éompletely applicable to the othexr by simbly interchanging the defi-
- nitions of M and N (M always being the larger). The differences ave,

- of course, important for hardware implementation clioices that way be

~driven by economic and/or dynamic considerations. For example, appli-
- cations involving only navigational position-fixing en route would prob-

" ably not UarxantAthe~¢cst’o£ extensive reference preparation and on-

' §0ard_9t9;a3e.'aq‘ghg;;:he;pgcqnd?alternative (using a small vefereuce)

i, s Sban 2
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might be preferred. However, in the case of terminal homing against
known targets, the time constraint on acquiring data for the last
steering correction, combined with the added cost of a large field-
of-view sensor, would argue the other way. Since the primary concern
of this report is with terminal homing, the use of a small sensor map
and a large reference map is assumed consistently; but, to repeat, the
analysis really covers both cases.

In attempting to properly locate the sensor map relative to the
reference map, the sensor map must be compared with numerous equally
sized portions of the reference map. In Fig. 2, the sensor map is

shown in two positions--one is the correct or matching position, and

REFERENCE MAP

SENSOR MAP
Displaced Location

SENSOR MAP
True Loccntion/ J

¥

.Eﬁg. 2~ Definition of map displacement
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the other 1is one of the Q possible nonmatching positions.* The dis-
placement from the correct location of the sensor map to any arbitrary
position is defined to be the displacement vector, here indicated by

a single index, J. In the absence of certain geometrical errors to be
discussed later, all elements of the sensor map are correctly posi-
tioned with the corresponding elements of the reference map when the
displacement vector is zero. The acquisition phase of the image corre-
lation problem thus reduces to a two-state discrimination problem, i.e.,
to one of discriminating between the case when the displacement vector
equals zero (termed the in-register case) and the case when it does not

(termed the out-of-register case).

"METRICS" AND FORMULAS FOR Pc

The actual point-by-~point comparison of the sensor map with the
reference wap is made by computing the value of one of several possible
functions of the displacement, J. Algorithms suitable for this compu-
tation can be considered, for the moment, as arbitrarily selected func~
tions or "metrics" whose efficacy is to be tested empirically. The
justification (or lack of it) for some of the possible choices is dis-
cussed more carefully in Part II of this report [l]. The most commonly
used algorithm is derived from classical correlation, which is approxi-
mated by computing finite sums, sometimes normalized, of the form

N
0 = D Kpygty  (Prod) . o
=1

This 18 referred to as the Product algorithm., 'The next most important
motric is the mean absolute differemnce (MAD) algorithm, defined as

N
0@ =% Y Ix -yl o . @)
& |

*

When the separation betwaen positionn is measured in units of the
cell gize, this number Q 18, in the case of one-dimensional strip maps,
simply M - N; for two-dimensional wmaps, it is (m - n + nHé -1,

WA gt st S s
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A third function, the difference squared,

N
1 2
930 = § Z Ky = ¥p) 0
I=1

is of some theoretical interest and is mentioned again in Part IT;
however, over the range of parameter values explored here, this func-
tion always gives lower values for the probability of correct lock
than does ¢2. Many other algorithms have been tried, by us and by
others (4], with the same general conclusion. The exposition here is
confined to the Product and MAD algorithms as being representative of
the two principal classes of algorithms that have been proposed to date.
When the maps are in register, J = 0; and if no errors are present,
X, =Y

1 1
that ¢2(J) has a minimum value under these conditions, Thus, 1f it can

It can easily be shown that ¢, (J) has a maximum value and
1

be assumed that for some test position the two maps really do coincide,
then the value of J for which ¢(J) is an extremum essentially defines
the best match position between the two maps. However, in the presence
of noise and various other errors to be discussed, the extremum only
defines the correct match point on the averuge. Because of these ef=-
fects there is only a certain probability, Pc (over an infinite ensemble
of maps), that the extremum actually defines the correct match point.
If p(¢|S) denotes the conditional probability density of the value of
the metric when the maps are matched (5 = signal present), and if
p(d|B) denotes the conditional probability density of the value of the
wetric when the maps are mismatched (B = background present), then for
a waximizing metric the probability of correct acquisition is given by

' Q

?c-f pLols) f plo’[B) a¢'| do (3)

-y i)

where Q, as before, denotes the number of mismatched positions. A
1. simple change in the 1im{g§_of_in;egrat;gnvdescr;hes,the'probability
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of correct acquisition for a minimizing metric. 1 - Pc, of course,
gives the probability of a false lock or gross error--the problem
mentioned in Section I.

One straightforward, though certainly only approximate, method of
calculating Pc has been proposed by Johnson [5]. His method is approx-
imate because of the large number of quite fundamental assumptions he
has made in order to render the analysis tractable. Some of these
assumptions are known to be invalid, at least some of the time, if not
always. Nevertheless, calculations carried out using his method can
provide a good deal of insight into the operation of correlators.
Johnson's method, with certain extensions described below, provides
the basis for much of the work discussed in this report. His assump-
tions can be stated as follows:

1. The sensor signal (albeit distorted) does exist in the refer-
ence data--an assumption that is not made in the broader
Bayesian approach discussed in Part 1I of this study.

2. The reference data, XI, are assumed to 2e stationary, e;godic,
and Gaussian distributed with zero mean and variance ox.
(Tynical real scenes contain a two-dimensional structure,
usually but not necessarily man made-~-field boundaries, roads,
buildings--that are clearly non-Gaussian.)

3. The sensor data, YI’ are assumed to be the reference data

- xI + NI‘ with N

1 I
ergodic, and Gaugsian distributed with zero mean and varlance

corrupted by noise, such that Y stationary,
oﬁ. (Thus, only additive, white, uncorrelated noise is con-
sideved at this point. Other differences between XI and YI
. are discussed later.) The ratio o:/oﬁris designated S/N and
is referred to as the signal-to-noise ratio. _
4. The ;eference wmap values, xl. the sensor wap values, YI, and
the noise values, NI. are separately_and nutually statisti-
- cally independent random variables. (This is probably mot

R . .
Data with a nonzerc mwean can easily be reduced to weet this coa-
dition by sultable preprocessing. ’
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a "serious" or poorly met assumption; it does require, how-
ever, that when a scene exhibits spatial correlation, M and
N must be interpreted as the numbers of independent data
samples in the reference and sensor maps, respectively.)

5. The distribution of the values of the metric over the ensemble
of maps is also Gaussian. (The error introduced by this
demonstrably false assumption may be small as long as the
number of elements in the sensor map is large enough for the
central limit theorem to hold. This point has been investi-
gated in detail by Sollfrey,* but only for the Product algo-
rithm; he finds that, due to some compensating effects, the
correct result is not seriously different from the Gaussian
calculation.)

With these assumptions, it is indeaed straightforward, though
somewhat tedious, to calculate the ensemble means and variances of
various metrics botk for in-register (J = 0) and out-of-register (J # 0)

conditions, and then to compute Pc by means of a formula of the form

Q
+0 o= -
| 2 @, - 3, +w
Pc = 1 f exp- _W.é_ . % t %— erf —> d dw , (4)
S Vma 20, V2 o

vhere ¢ and 5 are the ensemble mean values of the metric when the

2

© maps are in and out of register, respectively; o and oi are the en-

semble variances when the maps are in and nut of register; w is ¢° $0:

~and Q is the number of out-of-register values of J as defined in the

“footnote on p. 7. The quantities 30, oﬁ, and 0§ are gimply related*
2
X

gration of Eq. (4) for varicus values of the parameters N, 7, and S/N

to N, 0, and oﬁ. Values of Pc have been obtained by numerical inte-

B

W, sollfrey. The Rand Corporation (private communication).

3 *1hL relovant ensemble statistics for the quantities 9, Uﬁ. and
_oj_are shown in the table below. Corresponding formulas for other
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4 10 < q = 10%, and 0.1 = /N < 30,

using Rand's IBM 370/158 computer.

within the ranges of 10 £ N < 10

NUMERLICAL RESULTS

Some of the vesults of these calculations are shown in Fig. 3,
where PC is plotted as a function of the S$/N ratio for two specific
values of N and @, for both the Product and MAD algorithms. In order
to 1llustrate more clearly the nature of the dependence on the param-
eters N and Q, additional data are presented in Figs. 4 through 6 in
the form of contours of constant probability (P = 0.99, 0.90, 0.70,
and 0, 50) as a function of N and Q for three different values of S/N,

again for both algorithms.

The following significant conclusions* can be drawn from these
data.

o The probability of correct match, Pc’ increases with an in-
srease in the elemental signal-to-noise ratie, S$/N, and with an increase
in the size of the data sample, N. (This, of course, is to be ex-
pected, siuce the total signal-to-noise ratio represented by the sum
of the contribution from each sensor map element is increased by either
an increase in the elemental signal-to-noise ratio or an increase in the

total number of scnsor map elements.)

+ oo ow e em.x X noop e T

alboriLth have been derived but ave not needed heve.

- 2 2
Algorithm L o Y _ Gj
, 2 2 pa? o o2 ° 2, 2
'l rod o, (oxlN)(‘mx + a“) (o /N)(o o )
| MAD ¢2ln 0, (1 - "/ﬂ)(a vy 1 - zlu)(o + 0 )/N

leuvs of P, as low as 0.7 and 0.5 would prubthy be unsntis»
factory for wilitary systemss however, they ave plotted in order to
show tromds and to permit extrapolations and interpolations to be wade.

-i- .
$iwilar conclusions have been veached by Loekhewd [4] dn a sys-

- tematie survey of many possible algorithme; however, their priveipal

criterion for judging the success of algorithms was the accuracy of

~the poaition m&usurumuut. whereas ours iu the prnbubility of vorrect
: Mt&ho . . . .

B el TP ks gt o ST TR BT SRR W e e s

[
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N = number of sensor map elements
Q = number of out-of-register positions

o
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Probability of o correct match
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¢ The probability of correct match, Pc, decreases with increas-
ing Q, the number of out-of-register positior‘. but the decrease with
increasing Q is relatively weak in comparison to the effect of a change
in the number of sensor map elements, N, as shown in Figs. 4 through 6.
(This behavior can be explained qualitatively by the fact that an in-
crease in the number of out~of-register positions tends to inci:ase the
root-mean-square variation in the value of the metric roughly as the
square root of Q, whereas an increase in N increases the value of the
metric linearly when the two maps are matched.)

e At low signal-to-noise ratios (S/N = 1), the Product is the
better algorithm, i.e., it leads to higher values of Pc' (This result
is analogous to the well-known finding in statistical communication
theory that a correlation receiver is the “matched filter," the best
receiver for detecting a signal in noise; however, as explained in
Part 11 of this report, the map-matching problem is fundamentally dif-
ferent and the apparent analogy cannot be pressed.)

e At high signal-to-noise ratios (S/N 2 3), the MAD is the better
algorithm.* (A heuristic explanation for this result is also given in
rPart 11. More importantly, it is shown next in Section I1I that, in
real-world systems applications, the high values of §/N that would
justify use of the MAD metric are very seldom realized.)

—
When 1 < §/N > 3, results are mixed and the:choice of algorithm
is not critical.
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III. TREATMENT COF VARIOUS SYSTEMATIC ERRORS

QUALITATIVE DISCUSSION OF ERROR SOURCES

The method described above can be extended to analyze, at least
approximately, the effectiveness of correlation techniques for target
acquisition when error sources other than simple additive noise are
present. In general, there are at least four classes of systematic

errors that can degrade correlation performance:

Geometrical distortions.

. Systematic intensity changes.

Quantization errors.

LB I N

. Enemy jamming.

1. Any geometrical distortion of the sensor map coordinates rela-
tive to the reference map coordinates degrades, in ways that are dis-
cussed below, the performance of a map-matching system. The four most
important types of geometrical distortion are synchronization, rotation
scale factor (magnification), and perspective errors., The detailed
analysis of these effects, for digital systems, involves synthesizing
o grid of cells each of which is given a value that is an appropriately
weighted average of the values of the distorted cells that partially
overlap each of the undistorted cells. These errors are illustrated
. o in Fig. 7, where, for each case, the four cells survounding the center
4 of the reference map are depicted, together with the corresponding cells
of the distorted scnsor map. '

Synchronization errors occur because there is no way to ensure a

¥
¥
x
Iy

ki

¥
it

common origin between the sensor and roference map grids. As shown in

the figure, this type of ervor results in all the grid clements of oune
~map being fractionally displaced frowm those of the other map., This
" displacement can cause each sensor wap grid element to overlap as many

o R

as four grid elements of the veference map. The effects of synchroni-
zation errors are most significant when the dimensions of a grid element

"é A are comparable to the average dimensions of a statistically independent
- © scene element.

U SIN TIN R ert MatR AR S W L S et e e
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Rotation errors canm be caused by heading or attitude reference
errors on board the weapon. If the sensor map is centered but rotated
relative to the reference map, the map-matching process compares a
single sensor cell with a combination of fractions of both matching
and nonmatching reference cells. The amount of overlap with nonmatch-
ing cells increases as one moves radially outward from the center of
the two maps.

Uniform magnification or scale errors are primarily caused by
errors in weapon altitude or range to the target, although in some
cases they may be caused by several other effects as well. 1In the
presence of scale factor errors, the sensor elements are dimensioned
either somewhat larger or somewhat smaller than the reference map ele-
ments, Consequently, elements of the sensor map, when overlaid on the
reference scene, will again encompass both matching and nonmatching
reference elements, with the amount of nonmatching overlap increasing
as one moves radially outward from the center.

Perspective errors occur when the sensor views the reference area
from a different position in space, because of midcourse navigation
inaccuracies, for example. Owing to the difference in perspective, a
grid pattern of square cells is transformed into an array of trapezoids.
Thus, the effect is similar to a linearly varying scale factor error.

When geometrical distortions are present, only a partial match
between sensor and reference map elements is possible. When the map
centers are slightly displaced, some of the previously nonmatching map
elements are broughtiinto coincidence, so that a partial match gondi-
tion holds for these displacements. The overall effects on the corre-

- lation function or'comphriaon wetric are thus twofold: the peak value
of the metric for the matched condition is reduced, and the breadth of
the function is increased. ' ‘ '
2. Syetomatie intensity errors include all changes in the ampli-
tude (or intensity) of the sensed scene relative to the reference scene

- that cannot be attributed to sensor noise. These changes can be aggre-
gated iato four:generallcategories: (a) uniform change in overall signal
level, (b) shadowing and obscurations, (c) changes in scear reflectivity/
a@iﬁsivity; aud (d) reférence map comstruction errors. ‘

T L ikt el et A
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The overall signal level of the sensor scene relative to the
reference scene can be altered by changes in scene illumination (e.g.,
day/night or sun/overcast) or by changes in sensor gain settings.
Changes in the optical properties of the atmosphere can also change
the overall signal level and/or the contrast perceived by the sensor.
Shadows due to clouds or changes in sun angle, and obscurations due to
intervening hills or foliage, cause blocks of sensor data elements to
be totally dissimilar to the corresponding reference data elements.

The reflectivity of certain portions of a scene can change drastically
as a result of physical changes on the ground, such as snowfall or
flooding, or less drastically but significantly as a result of dif-
ferences in moisture content or seasonal changes in foliage and vegeta-
tion, or to a still lesser degree simply because of differences in the
direction of the illumination by either active sensors or the sun at
different times of day. Finally, the sensor scene can be different
from the reference scene owing to actual changes in the reference scene
(e.g., new man-made objects) and to reference map construction errors.
This last category includes all errors made in producing the reference
map, but primarily refers to errors made in transforming the original
reconnaissance data taken in one spectral region (e.g., photographic)
into a reference map for use with a "live" sensor in a different spectral
region (such as infrared or millimeter waves).

These systematic erroxs generally do nwot increase the width of the
correlation function significantly, but they do certainly reduce the
differvential between the in- and out-of-register values, thereby increas-
ing the possibility for false locks.

3. In digital correlation systems, the semnsor data, which are
usually analog in nature originally and may huv¢ any one of a contin-
uum of values at each pixel, ave quantized into discrete levels and
encoded.  This process glves rise to what is sometimes called (through
analogy with photographic systems) gray-level coding errors, or, more

| generally, quantisation crrers. The effects of quantization become
important when only a few gray levels are used and when other orvors

_are presont simultaneously._-Under those conditions, a signal that is |
distorted or has had noisgzadch_to3iﬁ way cither be qodcd'exactly like

.
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the original (in which case, the effect of the noise or distortion

has been eliminated) or it may be coded at a different level (in which
case the effect of the original error is usually exacerbated). Thus,

the effect is something like the addition of noise, but it is a peculiar,
non-Gaussian, kind of noise.

4. Finally, enemy jamming can cause (a) additional noise, possibly
time varying, in all or a portion of the sensor elements or (b), in
severe cases, complete saturation of most or all of the sensor elements.
As with the "block" errors described above, the principal effect of jam-
ming is usually to weaken the extremum value of the comparison metric,

thus decreasing PC.

ANALYSIS OF GEOMETRIC ERRORS

0f the geometric errors, synchronization, scale factor, and rota-

tion errors have been examined explicitly. Because of the difficulty
in modeling perspective errors, and because results generally similar
to those produced by scale factor errors are to be expected, this type
of geometric distortion has not been evaluated here. The analysis of
the effects of uniform intensity errors are described here; the effects
of quantization and a brief simulation of enemy jamming are reported

in Section 1lV.

SYNCHRONIZATION
As mentioned previously, a synchronization error causes every ele-

ment in rhe sensor map to be fractionally displaced, usually both verti-
cally and horizontally, from the corresponding elements of the reference
'map. The amount of sensor/reference map overlap can be measured by the
parameters a, as shown in Fig. 8, Thus, a new reference map, X;. can

be established by comstructing a properly weighted average of the values
An the four cells that partially overlap cell YI+J'

“This procedure enables one to uge Eq. (4) for calculating the ac-
quisition probability fn the presence of a specified synchronization
-ervor. The calculation involves two preliminavy steps: (1) setting
up the necessary statigtical quantities, i.¢., the ensemble means and
variances of both in- and out-of-vegister comparison wetrics (as above),
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Fig. 8—Cell construction for analysis of synchronization errors

and (2) finding the extremum of the four partially overlapping posi-
tions. Specifically, for this second step a new random variable is
formed that is the maximum (minimum) of all in-partial-register values
of the metric. The »nr~ksLility density function of this random vari-
able can be expressed in terms of the probability density functions of
the four in-partial-register metric values. Then, Pc can be calculated
by replacing the distribution of the in-register correlation function
(in the standard case of only one match point) with this distribution
of the maximum value, and proceeding wich the approach outlined
previously. , - i

' Sowe of the recsults of this analysis are presented in Figs. 9
through 11 in the form (as before) of Pc contours. The vorst-case .
ayochronization error (producing the lowest values of Pc) occurs when
each sensor element overlaps four refetence elements and the areas of

~ ‘overlap are equal (u1 " Qy ¥ 0y wa, w0.25). An exanination of these
- -contours shows the Product algorithm to be superior to the MAD algorithm




4
10" ~ - ——— - =
;zaq ”f’ ’__—-”_-’
.—.0’ ’4‘ ’,- ”/
b - - -
- //90 - ”
e Qe ”~ i
y ” e
- /10/’
/Q./
/ /‘)0
1000 e

o

8

Number of sensor map elements, IN

! 1 1. 1

10 10 10° 10% 10° 10°

Number of out=of=register positions, Q

Fig. 9—Probability contours for S/N = 0.1 + maximum synchronization error

4
10 g
. Prod
i -= <= MAD
e
- -
IOOOEE— == T T T S
- “.'_..,_——-_ “_-.":::‘.5_ - -
._,,.-o' e -

‘Number of sensar map elements, N

10 ! / I 1 i L s
v et 0 et 10° -t
' Numbar of out-of-register positions, Q

_‘ ) Fig. 10— Probability contours for §/N = 1.0 + maximum synchronization error




~22-

4
10t e
— Prod

z - -~~~ MAD
£ -
g
91000 =
1 Y] -
s F P=70.99 0.9 0.70 0.50
E L —— ==
§ - ——- "'_'__——-:
[ — -
&
2 100
[+
£
€
=1
2

10 <

10 102 10° 104 10° 10°

Number of out«of-register positions, Q

Fig. 11— Probability contours for S/N = 30 + maximum synchronization error

for all S/N ratios (0.1 to 30) when worst-case synchronization errors
are present. This result is easily understood if the lack of synchron-
ization is interpreted (loosely) as an additional source of "noise,"
i.e., unavoildable differences between the two maps. Comparison of
these results with Figs. 4 through 6, as illustrated explicitly in

Fig. 12, shows that the effective value of S$/N in the presence of worst-
case synchronization errors is never greater than unity (on scenes with
no spatial correlation); hence, according to the original finding with
regard to S/N, the Product algorithm should be superior. Additional
data on the relative degradation of Pc as a function of the magnitude
and direction of the synchronization error is presented in Fig. 13 for
a few specific situations. ' '

~ MAGNIFICATION

With a magnification or scale factor error (assumed isotropic and '
constant over the map), as mentioned earlier, the sensor elements are
dimensioned either somewhat larger or somewhat smaller than the refer-

- ence map elements. The effects of such errors can again be analyzed

by constructing an artificlal reference map coasisting of appropriately
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weighted combinations of the partially overlapping cells, and proceed-
ing in a manner that is completely analogous to that used in analyzing
synchronization errors. For the purpose of this analysis, the follow-

*
ing values of scale factor have been used:

p =101, 1,02, 1.05, 1.1, 1.2, 1.5, 2,
and the following sensor map sizes have been selected:

10 x 10 (N = 10%)
30 x 30 (N = 9 x 10%)
100 x 100 (N = 10%)

300 x 300 (N = 9 x 10%)

To illustrate how scale factor error both spreads the correlation
function and decreases its peak value, consider a 10 x 10 sensor map
and a function of the displacement that simply measures the total area
of overlap obtained by summing over all cells. Table 1 shows this
function for an array of displacements up to *5 cells in both directions.
When there is no scale factor error (p = 1) and the two maps are posi-
tioned on center, all 100 sensor map elements match their reference map
counterparts. With each reference element defined to contain unit area,
the match area in this case is 100 units, which produces (in the absence
of noise or other errors) 100 percent overlap as shown. ¥For any other
displacement position, there is no match between reference and sensov
elements and, as indicated in the table, the overlapping match area is
2ero,

As the scale factor is increased to 1.01, also shown in Table 1,

‘the number of displacement positlons for which there is at least partial

overlap between the two maps increases from one to nine., In addition,
the area of overlap at the center positinn has decreased frow 100 units

s e B BV

Values of p < 1 can best be treated by using the reciprocal values

-.and ‘interchanging the roles of reference and sensov waps.
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Table 1

RELATIVE MAGNITUDE OF OVERLAP AREA WITH MAGNIFICATION ERRORS
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to approximately 96. The table shows a further decrease in the maxi-
mum overlap as P is increased to 1.1. When p 1s increased to 1.5, the
number of displacement positions for which there is at least partial
overlap between the two maps has increased to 49, and the maximum over-
lap has dropped to 9 percent of what it was when there was no scale
tactor error. Finally, when p = 2, the overlap function resembles a
plateau covering the entire ‘sensor map.

Table 2 conveniently summarizes the "width" of the overlap func-
tion in terms of the total number of displacement positions (including

center) for which at least partial overlap exists as a function of the

Table 2

NUMBER OF OVERLAPPING POSITIONS AS A FUNCTION
OF SCALE FACTOR AND MAP SI1ZE

Overlapping Positions for Map Sizes of -~
Scale Factor,

P 10 > 10 | 30 x 30 | 100 < 100 | 300 x 300
1 1 1 1 1
1.01 9 9 9 25
1,02 ] 9 9 49
1,0% 9 9 49 289
1.1 9 25 121 Yul
1.2 9 44 441 1,721
1.5 49 289 2,601 22,501
2.0 121 961 10,201 90,601

map size and scale factor. Table 3 suumarizes the magnitude of the
maximum value of the overlap Funetion velative to the cwsg.wﬁth.néufT
seale factor error (p = 1), also as a function of‘mnvfﬁﬁﬁéfaﬁﬂ scgi§“_‘
factor. S QHT‘ TR
Tables 2 and '3 cun be used as qualitative mcasures of how the

secale factor degrades corvelator performagee. In order tu keep the
vorrelation width narvow (e.g., not wore than aine cells) nnq the cor=
velation peak relatively high (o.g., greater thaw 0,5), the relation-

ships between wap size and scale factor evver given in Table 4 ave

T VR
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Tahle 3

RELATTVE MAGNITUDE OF THE CORRELATION FUNCTION PEAK
AS A FUNCTION OF SCALE FACTOR ERROR AND MAP SIZE

Magnitude of Correlation Peak
for Map Sizes of--
Scale Factor,

p 10 x 10 | 30 x 30 100 x 100 | 300 x 300
1 1 1 1 1
1.01 .96 .86 .57 .11
1.02 .92 .74 .26 .03
1.05 .81 .42 .04 .005
1.1 .64 .13 .01 .001
1.2 . 36 .04 .004 L0004
1.5 .09 .01 .0609 .0001
2.0 04 .002 .0004 .00004

suggested as practical operating requirements, These relationships

can be expressed by the following rule of thumb:
ap-1s1, (3)

which simply states that the displacement (n/2)(p - 1) of a border cell
should not exceed one~half cell width, S8ince maps as small as 10 x 10
will probably not be used in practice, this rule translates into a re-
quirement on the scale (or on the estimated range to the target) of 1
to 5 percent--a not uareasonable requirement.

Table 4

APPROXITMATE RELATTONSHIPS FOR ALLOWABLE
SCALE FACTOR ERROR AS A FUNCTION
OF MAP S1ZE

Hap Siae | Scale PFactor

10 = 10 - palld
30 % 30 p < 1.04
100 = 100 ¢ 1.01
300 » 300 Not to be used
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il The calculation of P, in the presence of a scale factor error
proceeds exactly as before. Results are presented in Fig. 14. It is
apparent that scale factor errors always degrade correlator performance

because of the decreased number of effectively matched cells.

Probability of correct match, P

-
0 | e T

0 T 1.2 1.3 7.4

Magnification, p

Fig. 14—P; as o function of magnification p

ROTATION
‘ As with scale factor errors, a rotation between reference and
sensor maps also increases the correlation spread over a larger number
of displacement positions and decreases the peak of the correlation
function. An illustrative example, similar to that providedrfor scale
factor ervor, is shown in Table 5 for an assumed 10 x 10 sensor map.
When there is no rotation errvor (0 » 0) and whea the wap centers co-
incide, all 100 sensor map elements match their reference map counter-
parts; for any other displacement position, there is wo overlap. As
0 increases to 0.2 radian, as shown in Table 5, the nouzero overlap
region spreads to nine cells and the magnitude of the maximum overlap
decreases progressively. When 0 reaches O.SVrndian, the number of
displacement positions for which there is at least partial correlation
botween the two maps increases to forty-five. |

A separate analyeis, analogous to that used for scale factor errors,
¢ ? : can be extended to deteruiue Pc as & function of wap size, rotation

oy e T NI K e onrrg
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error, and search area. This tedious step can be avoided, however, if
a relationship between scale factor errors and rotation errors can be
found. Such a relationship seems intuitively plausible, at least for

small rotation angles, and indeed one has been given by Lahart [6] as

0 ~p-1. (6)

A comparison of the maximum area of overlap for scale factor and rota-
tion errors is shown in Fig. 15 for the 10 x 10 (N = 100) map size.
The agreement appears reascnably good, at least for the small rota-
tion and scale factor errors that are of Interest. A test of this

relationship between 6 and p was also made for the larger map sizes,

Map Size: 10 x 10

-
k4

.Q- . ) .
2 - Rotation error (6)
%

210 ‘

e g Scole factor error (p-1) —

g i -

< -

L 2 A YU WO W W W O A - ' TV VR W U A 8

0.0l 0.10 , 1.0
v 6 (radicng), p -1

Fig. 15 Comparison of the ralative magnitude
" of the correlation peak for scale faclor
" ond rofadion errors o
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and similar agreements were found.* To demonstrate real equivalence,

it is also necessary to compare the relative shapes of the overlap
functions for both error sources. This is done by comparing the over-
lapping match area at each displacement position, for two values of p
and 0, with the sensor map containing 100 elements, as shown in Table 6.
Considering the computational inaccuracies associated with determining
the overlapping match area for both scale factor and rotation errors,

the agreement is quite good.

Table 6

COMPARISON OF OVERLAP AREAS FOR SCALE FACTOR AND ROTATION ERRORS
(Map size = 10 x 10)

Scale Factor, Rotation Errors, Scale Factor, Rotation Errors,
p=1,01 6= .01 p=1.02 0= .02
(™ ™ " " 0 VR it I | B b A o F"";Z""&
: 002 1.5 .02 : 02 1.2 .02: v 09 2.9 .09: 1 06 . )
4.5 96, 1.5 )] 1.2 9. 1.2, 12,9 92. 2.9, :2.& 90. 2 6:
* ‘L.O2 1.5 02_: P02 1,2 .02J' it .09 2.9 09‘; ! .06__2.{0_ ...9(_’.1

S B A S A L el B

Consequently, on the basis of Lahart's analysis and the rough

equivalence demonstrated here between scale factor error and rotation

et S
W AR %

(for small rotation errors), the analysis of and pertinent conclusions

about the effects of scale factor errors are carried over directly to

the rotation problem. Specifically, the rule of thumb embodied in
Eg. (5) is extended to

sl )

in accordance with Lahart's formula given in Eq. (6). This corresponds
to a rotation error (compass or untitude'referencg) of 1 to 5 petceﬁtv
of a radian or 0.6 deg to 2.9 deg (see Tabla_&)--againAnot an uareasons~
able requircment. o

*A'formula that 1s>currcét to. 10 percent for p < 1.4 is -
0 - (- l)/(1.+:1.5(paf:1)]. ' :
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ANALYSIS OF UNIFORM AMPLITUDE ERRORS

I Sadhs 2T,

-

A qualitative discussion of the effects of systematic intensity
errors has been given previously. The only case that has been analyzed
quantitatively here is that of a uniform change in the overall signal
level or gain by a factor K. The method is straightforward. Changes
in the amplitude (or intensity) of the sensor scene relative to the
reference scene do not affect the performance of the Product algorithm;
but they can have drastic effects on the performance of the MAD algo-
rithm, as illustrated in Fig. 16. The explanation of these results is
straightforward. The Product algorithm attains its maximum whenever
the sensor and reference map values are proportional to each other (see
Part II of this study); therefore a change in the overall signal level
by a constant factor has no effect. The MAD algorithm, on the other hand,
attains its minimum value when the sensor and reference maps are equal
to each other. Thus, the greater the change in the overall signal level,

the more unequal are corresponding sensor and reference map values,

1.0

o
»
o

MAD algorithm only
(Prod is unaffected)

ility of correct match, P

Pr

S/N = .
0.1
) H

e ' 0.5 0
Signol level raduction fortor, K

Fig. 16~—~EHact of signol level los on 7,
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CONCLUSIONS

In this section we have analyzed the effects of several commonly
encountered error sources on two specific comparison metrics. Apart
from the generation of certain constraints that must be satisfied if
the effects of these errors are to be held within reasonable bounds,
the most important conclusion to be drawn is the following: Real sys-
tems suffer from unavoidable synchronization errors, from geometrical
distortions that can be partially controlled (at a cost) but not elim-
inated, and from amplitude changes some of which are partially control-
lable (such as quantization, discussed in Section IV, system malfunctions,
and detector noise) but most of which are not controllable (the real
changes in the scene). These systems are therefore invariably operated
under conditions of rather low effective signal-to-noise ratios. Thus,
despite the simplicity and the apparent advantages of a MAD algorithm
or other differencing algorithms as presented in Section II, a Product
algorithm will almost always be superior in real-world applications.
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IV. SIMULATIONS USING REAL DATA

Inasmuch as real scenes exhibit various amounts of spatial corre-
lation, and often quite non-Gaussian "structure" as well, it was im-
portant to test the theoretical conclusions presented in the previous
sections using real-world data. This testing took the form of a number

of computer simulations that are described in this section.

THE DATA BASE

talnous area west of the desert; “desert,

The digitized imagery used for all the computer simulations de-
scribed herein was taken from a computer tape obtained from Caltech's
Jet Propulsion Laboratory (JPL) in Pasadena. This tape contains a
digitized picture of a portion of Southern California, taken from an
earth resources satellite in the near infrared band. The region is
about 1135 miles square, centered on the Antelope Valley; it includes
the Los Angeles Basin and a significant length of coastline as promi-
nent features. The original picture was about 2300 pixels (picture
clements) x 3200 pixels, but was processed to yield a true (square)
representation of 2300 % 2300 pixels, FEach pixel represents a square
area of about 80 m on a side, and takes on a gray=-level value of 0
to 63. '

The tape is especially interesting because it contains very dif-
ferent types of terrain and man-made features. Four distinctive square
reglons measuring 100 pixels (about 5 mi) on a side were selected for
analysis. The four reglons used are "agricultural," a part of the

southern end of the San Joaquin Valley, characterized by fairly large

and regular fields of various crops; "mountains," a distinctive woun-

" a relatively featureless
and low-contrast ares in the Mojave Desert; and “suburbam," a portion
ef the San Feranando Valley in which there 18 a fairly regular geid of
tajor rouds. | _ | 7
~ Une of the basie statistics of interest is the correlation lengeh, -
because it effectively defines the size of a statistically independent

stene alcmeut, Figure 17 shows the autocorrvelation function, averaged.
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Fig. 17— Autocorrelation function for four selected scenes;
each scene is 100 x 100 pixels (about 5 mi sq)

over both x~ and y-directions, for each of the four regions, An effec-
tive "correlation length" can be defined in various ways. A common
definition is the magnitude of the displacement for which the auto-
correlation value is 1/e¢ = 0.368. Using this definition, the correla-
tion lengths range from 2 for suburban to about 13 for desert.

The inadequacy of the concept of a single effective correlation
length to characterize a real scene, and/or the inadequacy of the pav-
ticular definition used hefe. is apparent from the graph. The desert
autocorrelation coefficient initially falls off more sharply than that
of the agricultural region, but then has a non-zero value for very
large displacements and approaches zero very slowly. This phenomenon
way be at least partially explained by the additional observation that,
when the correlation length was calculated for various subreglomns, the
'value varied from about 3 fo 13 for an average of about 8. Thus an
“accurate comparison with the previously obtained theoretical vesults
is not to be expected in this case, since the effective nunber of sta-
tisc;cully'indcpendent sumples is poorly defined.
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SIMULATIONS WITH NQOISE ADDED

The most extensive simulations involved adding Gaussian noise
to the sensor scene, and calculating the values of both the Product
and the MAD metrics. The basic simulation paradigm used is as follows:
Divide each 100 X 100-pixel region into twenty-five 20 X 20-~pixel non-
overlapping subregions; these are called the reference scenes. For
each of these scenes, extract a smaller patch (generally 5 x 5 or
10 x 10) from the center, and call this the sensor scene. (Since the
central 5 x 5 patch of a 20 X 20 subregion is not precisely defined,
choose one of the four possible candidates arbitrarily and use it con-
sistently thereafter.) Compute the mean and variance of each sensor

“scene and subtract the mean from each element so that the new mean is
zero., Add Gaussian noise with zero mean and with a variance equal to
some multiple of the observed sensor varilance to obtain the desired
S/N ratio. Superimpose this sensor scene on the reference scene in
each of the possible displacement positions (162 positions for a 5 X 5,
ar 112 for a 10 x 10 sensor scene). For each superposition, also com-
pute the mean of the portion of the reference scene with which it is
to be matched. and remove its mean. Then apply each algorithm., If the
extreme value of the metric occurs when the sensor scene (with noise)
is placed in its original center position, then the search is a "success"
on that 20 ¥ 20 subregion. The number of successes over the 25 sub=-
reglons for each algorithm can be computed and, in this wanner, an
empirical probability, Pc’ thereby computed.

Simulations using the Product algorithm, i.e., the unnormalized
product, resulted in a significant number of false matches. This, of
course, is to be expected when relatively small-area scenes are com=
pared, and oven wora s0 wien the ensemble o{ scenes is not argodic.*

™
A specific numerical example will illustrate this problem. Con=-
sider the following "manufactured" 4 % 4 reference scene: ‘

1 1

1 1 11
1 1 -3 -1l
1 1 1 1

and define the 2 ¥ 2 center block as the “sensor" scene. (Note that
both the reference and seusor scenes have a zero wean.) If the Product
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Hence the normalized Product algorithm (NProd), which is simply the
classical correlation coefficient, was used in place of the Product
algorithm,

Values of S/N = 1 and 3 were tried. At the higher value, almost
perfect matches (Pc =~ 1) were obtained in all cases. The results for
S/N = 1 are shown, together with the theoretical predictions for
Gaussian ensembles, in Table 7. The empirical probabilities are, of
course, each based on only 25 cases. The standard deviation of these
values is given by 0 = [p(l ~ p)/n]llz, where p is the average value
of PC. Taking p ~ 0.8, it follows that ¢ =~ 0.08, |

It is evident from these results that when real data are used,
both algorithms perform significantly better, as measured by the frac-
tion of correct acquisitions, than was predicted by the theory developed
in Section I1I. The explanation probably lies in the fact that the
statistics of real scenes are not Gaussian in nature, as was specifi-
cally assumed in the theory. That is to say, the specification of just
two parameters--root-mean-square signal amplitude and a single correla-
tion length--is far from adequate for characterizing terrain, It is
obvious that two of the scenes, agricultural and suburban, contain
structure (predominant spatial frequencies) that are, of course, far
frou Gaussian in character; however, careful tests or measurements of
the degree of departure from Gaussian statistics have not been carried
out. Nevertheless, the strong inference persists, supported by intui-
tion, that correlation algorithms by their very nature are capabie of
exploiting these structural (non-Gaussian) features and thereby achieve
high acquisition capabilities. A proper analysis of map-matching per-
formance in the future can be expected to include not only the effects

metric is computed at each of the nine possible superposition loca~
tions, the maximum value will be found to occur at the right center
position rather than at the true center, whether or not the mean of
each 2 x 2 comparison area is subtracted out, because of the large
contribution of the ~11 (multiplied by -3) to the sum of products.

I£, on the other hand, the sum of products is normalized by dividing
by the product of the standard deviations of the sensor scene and each
2 x 2 comparivon scene of the reference map, any term containing the
~11 will be reduced by the correspondingly larger standard deviation,
with the result that the maximum value of the normalized Product metric
‘occurs at the true ceater. ’
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el of signal-to-noise ratio and spatial correlation (the Gaussian proper-
o ties of a scene that have been considered in the foregoing), but also
some yet-to-be-determined higher-order statistical parameters and/or
special ad hoc feature descriptors.
5 ' i One other experiment worth noting was conducted using this simula-
| tion technique. Since the expected value and variance of the in- and
out-of-register correlation functions (as used in the Pc computation)
are functions of the $/N ratio, it should be possible to estimate S/N
from a set of observed expected values and variances. This could be
of some interest because, in actual operatious, an adaptive processing
scheme might be used to select the best algorithm based on an initial
A estimate of the S/N ratio. This was iried for the MAD algorithm only.
a. 2 The procedure was (1) to compute from the data 8;, the variance of the
reference scene that makes the MAD a minimum, (2) to use the square of
the minimum correlation function value divided by 2/n* for 3;, and
(3) to take the ratio of 8§/3§ as the S/N estimate. In fact, this pro-
cedure can be used if geometric distortions are also present. When
the same expression* is used for the expected value of the in-vregister
correlation function (because the proper expression for the S/N ratio
with geometric distortion present is too complicated), the results
show that one can estimate the equivalent S/N ratio from the data within
about 10 percent of its actual value, even in the presence of added
geometrical errors. This level of accuracy appears to be adequate for
the kind of adaptive processor suggested at the beginning of this

paragraph,

SIMULATION OF GEOMETRIC DISTORTIONS

 geveral of the crrors treated analytically in Section IIT were
subjected tu o Limited amount of simulation testing, using the real-
world data described above. A program was written that introduces wost
of the several geomaéric distortions into the sensor map. The follow-
ing limits uero'previously'ostablishud for ihese-error sources '

"3, = @/
p. 10).

1/2

0, for the MAD algoritho (sce second footnote,

" B B tac U el
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Synchronization ,.. Maximum (al =0y =0y =0, s 0.25)
Scale factor ...... 10 percent (p < 1.1)

Rotation .......... 5,7 deg (6 < 0.1)

All of these errors were added simultaneously, together with an S/N
ratio of 3. The sensor map size chosen was 10 > 10 pixels (N = 100),

a size that would be large enough to prevent anomalrus results due to
statistical fluctuations and at the same time would keep computer costs
in check. The original 20 X 20 reference map size was retained. As
before,‘an ensemble of twenty~five sensor maps for each scene type was
compared with the corresponding reference maps, using both MAD and
NProd algorithms. A correct lock-on was considered to be achieved if
the extremum occurred in any one of the nine displacement positions
(map center plus eight adjacent pixels) for which partial correlation
was present.* This criterion was used because, as stated in Section I,
this investigation is chiefly concerned with "false" acquisitions, It
was assumed that different algorithms and appropriate interpolation
routines could be cmployed to refine the accuracy of tracking after
acquisition had been accomplished. The following results were obtained

from this simulation:

1

Pc Agricultural | Mountains | Desert | Suburbaun
For MAD 0.88 1.00 0.84 0.96
For NProd | =~ 0.96 1.00 0.96 1.00

These encouraging results are pot unexpected, sinee in all cases
the maximum linear displacement between cells is sigoificantly less
than a scene correlation lengeh,  In the worst case (smallest corrvela-
tion length »~ 2 for the suburban scenes), Lhe assumed synchronization
urror'corrcspondg to 4 56 percent arvea ovevlap between independent
scone elements.  The magimum displacement at the edge of the sensor

5 S ST A e

, This wumber is corrvect when the scale factor or rotation errvor
is taken alone; the corvelation width when they are combiued with a
- synchronization error iy not kaow with certainty..

Co e e A Rl s A S v e s
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map, for the assumed scale factor plus rointion errors, produces the
same displacement and degree of overlap; but in this case the average
displacement over the sensor map is two-thirds of the maximum.

As shown in the above table, and as was predicted by the theory
developed in Section IT, these geometrical errors more severely degrade
the MAD algorithm than they do the Product algorithm. However, it is
clear that for this size reference and sensor map, geometric distortions
at the levels investigated do nct seriously degrade the acquisition capa-
bilities of image correlators.

The theoretical analysis presented in Section III shows that, for
the assumed error magnitudes, the probability of correct lock-on is close
to unity for each type of geometric distortion taken separately in the
presence of additive noise. These simulation results, with all error
sources combined, are thus generally consistent with the theory. A
further analysis to determine the combinatioms of istortion and map
size for which significant degradation does occur was not wade becausge
geometric errors greater than those assumed here are considered unlikely

in most operational situatiomns,

SINULATION OF INVENSIEY, CHANGES

The effects of systematic errors that result in changes in the

amplitude of the sensor scene relative te the reference scene were also
simulated. Both uniform intensity changes (e.g., a constant bég¢entagc
veduction in all intensities) and environmental effects Lhat cause block
portions of the sensor scene to be completely different frow thgir vef-
erence counterparts were tried. | h
UNIFORM GAIN CHANGES

The first expevimeont used the same waps with addivive noise and
“with the same geometric ervotrs (except 10 percent-ef~maximum synchroniza-
tion error) vhat were used in the geowerric distortion evaluation. The
auplitude of the seusor wap was then reduced uniformly by'factots of
0.75 and 0.50. 7The results of the computer siwulatlons, based on twenty-

five siwulacions per vegion, are shown iw Table &.

e A
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Table 8

EFFECT OF UNIFORM RELATIVE AMPLITUDE ERRORS
ON THE PROBABILITY OF CORRELATION

(S/N = 3)

Relative Amplitude Factor

1.00 0.75 0.50

Scene Type MAD | NProd | MAD [NProd | MAD | NProd

Agricultural| 0.96 | 0.96 |1.00 | 1.00 [0.56 | 0.92

Mountains 1.00 | 1.00 [0.96 1.00 10.76 | 0.96
Desert 0.96 1.00 [0.92 1.00 {0.52 0.96
Suburban 1.60 1,00 | 1.00 1.00 |0.64 1.00

In accordance with the Gaussian theory, the Product~algorighm is -
not affected to any extent by uniform amplitude chauges. The MAD
algorithm, however, can be seriously degraded when intensity-scale
changes occur, because the minimization of the metric requires an
equality rather than merely a proportionality between the sensor and

reference wap values.

BLOCK SUBSTLTUTIONS

-Nonuniform amplitude errors that extend over-groups of ccntiguaus
pixels ave herein called block substitution errors. As discussed
earlier, the presence of clouds or shadows or certain types of sensor
waliunctions cau cause errvors of this type. A velatively crude experi-
went was conductad Lo test the offeets of such block substitution crrovs.
Gentral vertical styips of area 0.3, 0.5, and 0.7 of tha whole sensor
map were successively vemoved. Two differcut substitutions weve wmade:
in one the block was replaced by the mean value (zero), with no noise
{possibly simulating a shadow); iu the other the block was set equal
to the waxinum vaiue oceurring on the wmap, the new wup was renormalized

to Zore mcau.'and then random noise was added to each pixel (thus simu-

'lncing ot punsible form of jamming).

Table Y shows the results of this oxperiment. As expected, degra-

dation {ncreasvs with increasing size of the substituted block, aand
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Table 9

EFFECT OF CERTAIN BLOCK SUBSTITUTION ERRORS ON
THE PROBABILITY OF CORRELATION

(Noise added to sensor scene, S/N = 3)

"Shadow" Effect "Jamming" Effect
Fraction of Sensor Blocked Out-- Fraction of Seunsor Blocked Oui--

0.30 0.50 0.70 0.30 0.50 6.70

Scene Type MAD | NProd | MAD | NProd | MAD {NProd | MAD | NProd | MAD | NProd | MAD | N*rod

Agricultural [ 1.00} 1,00 | .64 .84 | .12 .56 .64 .68 .24 .36 04 04

Mountains .96 1 1.00] .80 .84 .32 | .68 | 92| .88 | .32| .28 | .00 | .08
Desert 1.00} 1.00|.96 | 1.00| .36 | .84 | .B0| .72 | .32 .40 | .00 | .24
Suburban 1.00| 1.00} .76 .96 | .48 | .68 | .64 .52 | .20 .36 | .00} .08

depends somewhat on the scene type. Less degradation oceurs when the
block is set equal to the mean value of the sensor map than when it is
set to the maximum value. It also appears that the Product algovithm
is much more resistant to large-block substitution errors than is the
MAD algorithm, particularly in the case of "shadows"; but toth are
seriously degraded in the presence of high-intensity jamming.

0f course, the above conclusions apply only to the particular
types of block errvors considered. Many more simulation runs would have
to be made with other types of errors in order to provide geneval vali-
dation of these findings. Nevertheless, the results are quite inter-
esting, and confirm what intuition would dictate. They also suggest

divections for future rvesearch,

GRAY-LEVEL QUANTIZATION
The effects of gray-level quantization have been explored briefly

in two experiments, uaing a few siwple encoding schowes. Quantization
necossarily introduces some dagradation of the map-matching process be-
causd information is always lost} thus, with bilnary coding, every gray
lovel s recorded as either -1 or l=-a drastic level of data compression
and information loss. On the other hand, computations can be groatly
sluplified 15 the data levels can be veduced to a wwall T
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In the first experiment, a completely random and uncorrelated
20 x 20-pixel map was generated with continuous (6-digit Gaussian
random number) gray levels. The central 5 x 5 and 10 x 10 portions
were extracted, to which noise with the same standard deviation
(S/N = 1) was added 100 different times. Then the intensity levels
in each cell of both maps were quantized into each of the three coding

schemes shown in Table 10, and correlations were carried out using both

Table 10

QUANTIZATION CODES

True level | -1.50 | -1.00 | =0.50 0[+0.5cr +lo| #1.50 ] o
Two-level code -1 +1

Four-levél code -2 -1 +1 +2
Eight—leve} codeﬂtl-é -3 ‘—2 -1 +1‘]**;2 +3 +4

MAD and Product algorithms. 1t was found that with the 10 x 10 maps,

Pc was espentially equal to unity for these quantization schemes, Using
the 5 X 5 maps, the results given in the first row of Table 1ll were
obtained.

These results show that PC increases monotonically (as expected)
with the number of quantization levels and that 8-level (i.e., 3=bit)
quantization schemes yield results close to the continuous case. There
are two additional points worth noting., First, when the data are quan-
tized, there is & finite possibility that the corvelation function will
“take on {ts extremum value at several displacement positions, Whenever
- this occurred in the simulatiups, it was counted {coarervatively) as a
false lock, vven though the true conter was among the displacement posi~
‘tlons that produced the extremum, Secend, it is'ohsurved,that the MAD
cand Product algorithms aré iﬂ@nticul fov binary éeding schemas.  Thig
- fact can bo demonstreated in 5unural by means of & truth table for the
product m\d for 1 - ldift[ |

L T

This equivalence was £irsi pointed out tu the authors by #. L.
Sendall of Hushus Aircra:t cumﬁany. _ - '
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Table 11

EXPERIMENTAL VERIFICATION OF EFFECT OF QUANTIZATION
ON THE PROBABILITY OF CORRELATION

(N =25, S/u=1)

Quantization Scheme

Continuous| 8-level 4-level Binary

Scene Type | MAD | NProd | MAD | NProd | MAD |NProd | MAG | NFrod

Random .90 .95 | .78 .87 | .65 | .74 301 .30
Agriculturall] .72 W72 64 | 52 36 | .40 | .36 .36
Mountains .76 .72 .60 .60 .36 .32 .28 .28
Desert .92 ¢ .92 | .80 | .80 | .48 | .56 | .36 .36
Suburban .80 | .92 | .72 .80 | .68 .72 .36 .36

In the second experiment, the same quantization schemes were

applied to the usual JPL digitized scenes. The S/N ratio was set at

1, and a 20 x 20 veference map and a 5 ¥ 5 sensor map were used. The
results are given in Table 11, together with the results for the ran-
dom scene. In this table, "continuous" denotes use of the original
data with no modification. It should be remembered, however, that the
original data itself is quantized to 64 levels, and that in practice
_somewhat fewer levels are generally present in any region because of

a certain homogeneity within the reglon (especially in the desert).
With the exception of the binary case, these data show that the real
(partially correlated) scenes yield lower values of Pc than cthe arti-
ficial random scene; this conforms with the Gaussian theory, since,

for the same number of pixels, there are fewer independent data samples
in the real scenes. '

The same two conclusions regarding the number of quantization

levels hold in this case as for the artificial map. Thus 8~ievel quan-
~tization {or possibly 1l6-level in sowe cases) 1s expected to be suf-
ficient for practical system applications. 1t should alse be noted that
a nupber of other coding schemes--altering the values assigned to each
level and the demarcations between levels--should be investigated uncil
uzarly optioum codes are-demonstrated. |
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LOCAL OPERATORS

Finally, some very preliminary experiments using local operators
to preprocess the imagery were undertaken. The purpose of these ex-
periments was to determine whether the probability of correct acquisi-
tions could be improved when such operators are used. Much research
has been done elsewhere on such techniques as contrast enhancement and
edge detection, and their application to real-world imagery has yielded
spectacular results in some cases, e.g., the visual enhancement of
pictures returned from the moon and minor planets. The application of
such techniques to image correlation involves the preprocessing of both
reference and sensor scenes in a manner that will enhance those fea-
tures contributing most strongly to a successful correlation while
suppressing the noise.

Operators are generally of two types, global or local. '"Globai"
refers to operators that transform the picture as a whole, such as

- histogram equalization or Fourier transformation. Local operators
transform a small portion of the picture at a time, but are generally
applied repetitively over the whole picture. Our experiments to date
have been limited to local operators.

Two simple locdl operators were applied to each scene through
computer simulation programs similar to those described previously.
The values of N, Q, and $/N were the same as these used in the earlier
simulations, so the results can be direectly compared.

The first local operator applied is referred to as a Laplacian,
because it is one of a class of operators used to form a finite-
difference approximation te the continuous Laplacian operator (sum of
second partial derivatives), The particular one ewployed heve is the

*
following two=dimensional weighting function:

DA 0 qh S W s YN

" :
The factor 8 is provided only to prescerve o zero mean.,  When

applied to an edge or corner of the map, the weighting function is

~appropriately truncated and the centril factor is modified accordingly.
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In use, this function is convolved with every point of the picture.
Thus the value of the map at a given point is replaced by the weighted
sum of products of map and weighting function values over a neighbor-
hood of 9 pixels.

The simulation was done exactly like the additive noise simula-
tion described earlier, except that 7 X 7 patches were extracted from
the original map (before application of the Laplacian) to form the
sensor scene. Gaussian noise (S/N = 1) was then added to the 7 x 7
map and the Laplacian was applied to this nolsy map. In this case the
edges were later discarded, leaving a 5 X 5 sensor map. (It is usually
not necessary to subtract the means, because the Laplacian operator
generally produces a mean that is small in relation to the standard
deviation.) Both the NProd and MAD algorithms were applied and
"successes" were recorded if the extremum occurred when the two map
centers coincided. The empirical probabilities thus determined are

shown below:

Pc Agricultural | Mountains | Desert | Suburban | Theory
For MAD .40 .24 .60 - .48 .50
For NProd .40 .28 .76 .56 .70

These results are more nearly in agreement with the original theo-
retical predictions of Section II (8/N = 1, N = 25, Q = 255) than were
those for the unprocessed scenes, & situation that may possibly be ex-
plained by the fact that the application of the Laplacian operator teuds
to pruduce'pictures with stacistics that ave more nearly Gaussian,
However, it is noteworthy that the application of the Laplacian does
not result in greater improvement, possibly because the Laplacian, being
basically a point operator, tends to émphasize isolated noisy points.

It is speculated that some smoothing of the data and/or application of
4 larger Laplacian (say, 9 * 9 in place of 3 % 3), would alleviate this

problom; however such experiments have not been attempted as of this

' writing.
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The second local operator tried was a type of scalar gradient.
A true (vector) gradient is somewhat difficult to handle and is pre-
sum: 'ly sensitive to rotation errors. The scalar gradient used was
the average magnitude of the change in gray-scale value between a
pixel and its 8 neighbors. This gradient is not unlike several that
have appeared in the literature and is somewhat like an edge-detection
operator.

By using this gradient, and applying the same general procedure as
with the Laplacian but with the mean subtracted, we obtained the follow-
ing results for the probability of correct acquisition:

PC Agricultural | Mountains | Desert | Suburban | Theory
For MAD .16 .08 .16 .12 0.50
For NProd .04 .00 .16 .16 0.70

These first results are quite poor and indicate that at least this
version of the gradient is not very useful. The effort on preprocessing,

using various local operators, is continuing.

CONCLUSIONS

There are two conclusions to be drawn from the real=-world=-scene
aexperimental work that has been described in tihis section. The first,
and quite significant, conclusion is that corrvelation devices genervally
perform better on rcal scenes than is predicted by simple Gaussian
theary., The second conelusion is that the predicted effeets of various
geometrical distortions and of changes in signal amplitudes, trcluding
quantization effects, are generally confirmed. '®we very preliminary

attempts to use preprocessing "filters" ave still quite inconclusive.
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V. MAJOR CONCLUSIONS AND FUTURE PLANS

The principal, overall conclusion of this study is that an approx-
imate lower bound on the value of Pc--the probability of correct (and
autonomous) target acquisition--can be calculated, so that one can, at
least in principle, design systems to meet an acquisition specification.

Quantitative relationships have been presented that show the de-
pendence of PC on N (the sensor map size), M (the search area or refer-
ence map size), S/N (nominally the signal-to-noise ratio but, more
importantly, a measure of the fidelity of the reference map vis a vis
the real-time sensor map), and various parameters describing systematic
intensity and geometrical errors. Thus one has the tools for carrying
out design tradeoffs on sensor resolution and field of view (to increase
N), on midcourse navigation (to decrease M), on attitude reference and
guidance (to reduce geometrical distortions), on data processing capa-
bilities (to reduce both synchronization and quantization effects), on
more recent and more accurate reference data (to increase S/N), and so
on, including, finally, a tradeoff of the cost of increasing the Pc
requirement itself with the loss of those few weapons that will be
wasted if they achieve a false lock.

Most of the above-mentioned relationships for Pc are derived from
a simple Gaussian theory that is known to be unrealistic., Fortunately,
however, this theory appears to err on the conservative side--most
scenes arg more distinctive than assumed and results are better than
predicted, On the other hand, real systems have additiomal error
sources that have not been analyzed in the experiments conducted in this
study. The important point is that, with a “"floor" established for Pc’
there should be no major surpriges in future flight tests of either
experimental or operational hardware ia the field of image correlation
guidance; improvements in the thoory, and additional data from simula~
tion experiments using specific scenes of interest, can only improve
the predictions and relax some of the design vestrictious. One can

~design to Pc requirements, though at the moneat wot as effectively as

would be desived.
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The second major conclusion of this study is that one may find
better algorithms in the future than those that have usually been used
in the past. The argument runs as follows: Tt is shown 'in Part Tl of
this study that, in general, there is not a unique or demonsffébly
optimum algorlithm for maximizing the acquisition capability of a map-
matching or image correlation guidance system. This statement is a
consequence of the fundamental nature of the map-matching process,
which involves, in any real situation, the comparison of nonidentical
imagery. Furthermore, simulation experiments are reported in Section
IV in which the acquisition probabilities obtained by using real scenes
were higher than those predicted by straightforward Gaussian theory.

It was concluded that this phenomenon is due precisely to the special
features--i.e., the non-Gaussian structure--that are present in most
scenes and that render them move distinctive than samples of pure
Gaussian noise would be.

Based on these two conclusions, the authors believe that approaches
founded on feature selection may lead to more efficient methods for
implementing this class of guidance system. Rather than to simply refine
algorithms that still compare every pixel in the sensor and reference
scenes, one should search for powerful preprocessing schemes to extract
the "most unique" features., One would perhaps apply several feature-
selecting algorithms to a refevence scene until "good" or efficient
features were found for each specific scene; then not only would the
reference map be modified, but the on-board preprocessor would be in-
structed to look for the same chosen features in the sensor map., As a
consequonce, the chances for a false loek should be reduced, and at the
same time the amount of real-time processiug required should also be
veduced. The degree of improvement cannot be known at the present time;
for some scenes it will be negligible, but for othevs it may be sub-
stantial. Only furthey study and experimentation can resvlve this point.
Since the expected operational context involves getting prior lwmagery
- anyway, this concept may be quite appropriate for military applications,

' Instead of using conventional feature-extraction algorithms, cur-
rent plans ave to develop procedures that relate more ¢losely to the

prub;em at hand. For example, one need only determine where map A falls
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within map B; it is not necessary to assign a classification to'map A
according to standard pattern recognition methods. Although these pro-
cedures can provide some guidance, certain new techniques seem more
promising, particularly the extraction of features that seem visually
unique, such as road intersections and certain other man-made objects
that lend "distinctiveness" to a picture. This idea may be generalized
and a form of local pseudoentropy may be calculated as a device for
isolating such features. Furthermore, the relationships of these fea-
tures to each other can provide valuable cues. Syntactic pattern
recognition, which takes such relationships into account, can be a
useful tool here; however, care must be taken to use just that which

is appropriate, without an overemphasis on formalism. Some techniques
from the field of artificial intelligence may also be employed.

Rand does not claim to be the first to arrive at this point of
view. We have, however, reached it completely independently and by a
route that was somewhat surprising to us, We have also tried to docu-
ment the rationale for this point of view better than it has been
documented elsewhere., Although of course not alone, we hope to pursue

this new approach in some detail during the coming months.
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